ELECTRONIC FORMULAS

Ohm's Law Formulas for D-C Circuits.

$$
E=I R=\frac{P}{I}=\sqrt{P R} \quad P=I^{2} R=E I=\frac{E^{2}}{R}
$$

Ohm's Law Formulas for A-C Circuits and Power Factor.

$$
E=I Z=\frac{P}{I \cos \Theta}=\sqrt{\frac{P Z}{\cos \Theta}} \quad P=I^{2} Z \cos \Theta=I E \cos \Theta=\frac{E^{2} \cos \Theta}{Z}
$$

In the above formulas Θ is the angle of lead or lag between current and voltage and $\cos \Theta=\mathrm{P} / \mathrm{EI}=$ power factor or $p f$.

$$
p f=\frac{\text { Active power (in watts) }}{\text { Apparent power (in volt-amps) }}=\frac{P}{E I} \quad \quad p f=\frac{R}{Z}
$$

Note: Active power is the "resistive" power and equals the equivalent heating effect on water.

Voltage/Current Phase Rule of Thumb Remember "ELI the ICE man"
ELI: \quad Voltage (E) comes before (leads) current (I) in an inductor (L)
ICE: \quad Current (I) comes before (leads) Voltage (E) in a capacitor (C)
Resistors in Series

$$
R_{\text {total }}=R_{1}+R_{2}=R_{3}+\ldots
$$

Two Resistors in Parallel $\quad R_{t}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad$ Resistors in Parallel, General Formula

$$
R_{\text {total }}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots}
$$

Resonant Frequency Formulas *Where in the second formula f is in kHz and L and C are in microunits.
$f=\frac{1}{2 \pi \sqrt{L C}}, \quad$ or $\quad f=\frac{159.2 *}{\sqrt{L C}}$
$L=\frac{1}{4 \pi^{2} f^{2} C}, \quad$ or $\quad L=\frac{25,330 *}{f^{2} C}$
$C=\frac{1}{4 \pi^{2} f^{2} L}, \quad$ or $\quad C=\frac{25,330 *}{f^{2} L}$

Conductance $\quad G=\frac{1}{R} \quad$ (for $D-C$ circuit) $\quad G=\frac{R}{R^{2}+X^{2}} \quad$ (for $A-C$ circuit)
Reactance Formulas $\quad X_{C}=\frac{1}{2 \pi f C}$
$C=\frac{1}{2 \pi f X_{C}}$
$X_{L}=2 \pi f L$
$L=\frac{X_{L}}{2 \pi f}$
Impedance Formulas $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad$ (for series circuit) $\quad Z=\frac{R X}{\sqrt{R^{2}+X^{2}}} \quad$ (for R and X in parallel)
Q or Figure of Merit $\quad Q=\frac{X_{L}}{R} \quad$ or $\quad \frac{X_{C}}{R}$

Frequency Response

Sinusoidal Voltages and Currents

$$
\text { Effective value } \quad=0.707 \mathrm{x} \text { peak value }
$$

[Also known as Root-Mean Square (RMS) value]
Half Cycle Average value $=0.637 \mathrm{x}$ peak value
Peak value
$=1.414 \mathrm{x}$ effective value
\therefore Effective value $\quad=1.11 \mathrm{x}$ average value

Three-phase AC Configurations

(120° phase difference between each voltage) If the connection to a three phase AC configuration is miswired, switching any two of the phases will put it back in the proper sequence. Electric power for ships commonly uses the delta configuration, while commercial electronic and aircraft applications commonly use the wye
 configuration.

Color Code for House Wiring:

Black or red
White
Green or bare

PURPOSE:
HOT
NEUTRAL (Return)
GROUND

Color Code for Chassis Wiring:
Red
White
Black

Third band
Multiplier
.1 Gold

Fourth band
Tolerance
5\% Gold
10\% Silver
20\% No color

Color Code for Resistors: First and second band:
(and third band \# of zeros if not gold/silver)

0	Black	5	Green
1	Brown	6	Blue
2	Red	7	Violet
3	Orange	8	Gray
4	Yellow	9	White

9
White

