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Figure 1.  Harmonics

Figure 2 Waveform Sampling

Figure 3.  Digital Filtering

TRANSFORMS /  WAVELETS

Transform Analysis

Signal processing using a transform analysis for calculations is a technique used to simplify or accelerate problem
solution.  For example, instead of dividing two large numbers, we might convert them to logarithms, subtract them, then
look-up the anti-log to obtain the result.  While this may seem a three-step process as opposed to a one-step division,
consider that long-hand division of a four digit number by a three digit number, carried out to four places requires three
divisions, 3-4 multiplication*s, and three subtractions.  Computers process additions or subtractions much faster than
multiplications or divisions, so transforms are sought which provide the desired signal processing using these steps.

Fourier Transform

Other types of transforms include the Fourier transform, which is
used to decompose or separate a waveform into a sum of sinusoids of
different frequencies.  It transforms our view of a signal from time based to
frequency based.  Figure 1 depicts how a square wave is formed by summing
certain particular sine waves.  The waveform must be continuous, periodic,
and almost everywhere differentiable.  The Fourier transform of a sequence
of rectangular pulses is a series of sinusoids.  The envelope of the amplitude
of the coefficients of this series is a waveform with a Sin X/X shape.  For the
special case of a single pulse, the Fourier series has an infinite series of
sinusoids that are present for the duration of the pulse.

Digital Sampling of Waveforms

In order to process a signal digitally, we
need to sample the signal frequently enough to
create a complete “picture” of the signal.   The
discrete Fourier transform (DFT) may be used in
this regard.  Samples are taken at uniform time
intervals as shown in Figure 2 and processed.

If the digital information is multiplied by
the Fourier coefficients, a digital filter is created
as shown Figure 3.  If the sum of the resultant
components is zero, the filter has ignored
(notched out) that frequency sample.  If the sum
is a relatively large number, the filter has passed
the signal.  With the single sinusoid shown, there
should be only one resultant.  (Note that being
“zero” and relatively large may just mean below
or above the filter*s cutoff threshold)
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Figure 4.  Phasor Representation

Figure 5.  Windowed Fourier Transform

Figure 4 depicts the process
pictorially:  The vectors in the figure
just happen to be pointing in a cardinal
direction because the strobe
frequencies are all multiples of the
vector (phasor) rotation rate, but that is
not normally the case.  Usually the
vectors will point in a number of
different directions, with a resultant in
some direction other than straight up.

In addition, sampling normally
has to taken at or above twice the rate
of interest (also known as the Nyquist
rate), otherwise ambiguous results may
be obtained.

Fast Fourier Transforms

One problem with this type of processing is the large number of additions, subtractions, and multiplications which
are required to reconstruct the output waveform.  The Fast Fourier transform (FFT) was developed to reduce this problem.
It recognizes that because the filter coefficients are sine and cosine waves, they are symmetrical about 90, 180, 270, and
360 degrees. They also have a number of coefficients equal either to one or zero, and duplicate coefficients from filter to
filter in a multibank arrangement.  By waiting for all of the inputs for the
bank to be received, adding together those inputs for which coefficients are
the same before performing multiplications, and separately summing those
combinations of inputs and products which are common to more than one
filter, the required amount of computing may be cut drastically.

C The number of computations for a DFT is on the order of N
squared.

C The number of computations for a FFT when N is a power of two
is on the order of N log  N.2

For example, in an eight filter bank, a DFT would require 512
computations, while an FFT would only require 56, significantly speeding up
processing time.

Windowed Fourier Transform

The Fourier transform is continuous, so a windowed Fourier
transform (WFT) is used to analyze non-periodic signals as shown in
Figure 5.  With the WFT, the signal is divided into sections (one such section
is shown in Figure 5) and each section is analyzed for frequency content.  If
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Figure 6 Wavelet Transform

the signal has sharp transitions, the input data is windowed so that the sections converge to zero at the endpoints.  Because
a single window is used for all frequencies in the WFT, the resolution of the analysis is the same (equally spaced) at all
locations in the time-frequency domain.

The FFT works well for signals with smooth or uniform frequencies, but it has been found that other transforms
work better with signals having pulse type characteristics, time-varying (non-stationary) frequencies, or odd shapes.

The FFT also does not distinguish sequence or timing information.  For example, if a signal has two frequencies
(a high followed by a low or vice versa), the Fourier transform only reveals the frequencies and relative amplitude, not the
order in which they occurred.  So Fourier analysis works well with stationary, continuous, periodic, differentiable signals,
but other methods are needed to deal with non-periodic or non-stationary signals.

Wavelet Transform

The Wavelet transform has been evolving for some time.  Mathematicians theorized its use in the early 1900's.
While the Fourier transform deals with transforming the time domain components to frequency domain and frequency
analysis, the wavelet transform deals with scale analysis, that is, by creating mathematical structures that provide varying
time/frequency/amplitude slices for analysis.  This transform is a portion (one or a few cycles) of a complete waveform,
hence the term wavelet.

The wavelet transform has the ability to identify
frequency (or scale) components, simultaneously with their
location(s) in time.  Additionally, computations are directly
proportional to the length of the input signal.  They require only
N multiplications (times a small constant) to convert the
waveform.  For the previous eight filter bank example, this
would be about twenty calculations, vice 56 for the FFT.

In wavelet analysis, the scale that one uses in looking
at data plays a special role. Wavelet algorithms process data at
different scales or resolutions. If we look at a signal with a
large "window," we would notice gross features. Similarly, if
we look at a signal with a small "window," we would notice
small discontinuities as shown in Figure 6. The result in
wavelet analysis is to "see the forest and the trees."  A way to
achieve this is to have short high-frequency fine scale
functions and long low-frequency ones.  This approach is
known as multi-resolution analysis.

For many decades, scientists have wanted more
appropriate functions than the sines and cosines (base
functions) which comprise Fourier analysis, to approximate
choppy signals. (Although Walsh transforms work if the
waveform is periodic and stationary). By their definition, sine and cosine functions are non-local (and stretch out to infinity),
and therefore do a very poor job in approximating sharp spikes.  But with wavelet analysis, we can use approximating
functions that are contained neatly in finite (time/frequency) domains. Wavelets are well-suited for approximating data with
sharp discontinuities. 

The wavelet analysis procedure is to adopt a wavelet prototype function, called an "analyzing wavelet" or "mother
wavelet." Temporal analysis is performed with a contracted, high-frequency version of the prototype wavelet, while
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Figure 7.  Wavelet Filtering

Figure 8.  Sample Wavelet Functions

frequency analysis is performed with a dilated, low-frequency version of the prototype wavelet. Because the original signal
or function can be represented in terms of a wavelet expansion (using coefficients in a linear combination of the wavelet
functions), data operations can be performed using just the corresponding wavelet coefficients as shown in Figure 7. 

 If one further chooses the best
wavelets adapted to the data, or truncates
the coefficients below some given threshold,
the data is sparsely represented.  This
"sparse coding" makes wavelets an excellent
tool in the field of data compression.  For
instance, the FBI uses wavelet coding to
store fingerprints.  Hence, the concept of
wavelets is to look at a signal at various
scales and analyze it with various
resolutions.

Analyzing Wavelet Functions

Fourier transforms deal with just two basis
functions (sine and cosine), while there are
an infinite number of wavelet basis
functions.  The freedom of the analyzing
wavelet is a major difference between the
two types of analyses and is important in
determining the results of the analysis.  The
“wrong” wavelet may be no better (or even
far worse than) than the Fourier analysis.
A successful application presupposes some
expertise on the part of the user.  Some
prior knowledge about the signal must
generally be known in order to select the
most suitable distribution and adapt the
parameters to the signal.  Some of the more
common ones are shown in Figure 8.  There
are several wavelets in each family, and
they may look different than those shown.
Somewhat longer in duration than these
functions, but significantly shorter than
infinite sinusoids is the cosine packet
shown in Figure 9.

Wavelet Comparison With Fourier Analysis

While a typical Fourier transform  provides frequency content information for samples within a given time interval,
a perfect wavelet transform records the start of one frequency (or event), then the start of a second event, with amplitude
added to or subtracted from, the base event.
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Figure 9.  Sample Wavelet Analysis

Figure 10.  Example 2 Analysis Wavelet

Example 1.

Wavelets are especially
useful in analyzing transients or time-
varying signals.  The input signal
shown in Figure 9 consists of a
sinusoid whose frequency changes in
stepped increments over time.  The
power of the spectrum is also shown.
Classical Fourier analysis will resolve
the frequencies but cannot provide
any information about the times at
which each occurs.  Wavelets provide
an efficient means of analyzing the
input signal so that frequencies and
the times at which they occur can be
resolved.  Wavelets have finite
duration and must also satisfy
additional properties beyond those
normally associated with standard
windows used with Fourier analysis.
The result after the wavelet transform
is applied is the plot shown in the lower right.  The wavelet analysis correctly resolves each of the frequencies and the time
when it occurs.  A series of wavelets is used in example 2.

Example 2.  Figure 10 shows the
input of a clean signal, and one with
noise. It also shows the output of a
number of “filters” with each signal.
A 6 dB S/N improvement can be
seen from the d4 output.  (Recall
from Section 4.3 that 6 dB
corresponds to doubling of detection
range.)  In the filter cascade, the
HPFs and LPFs are the same at each
level.  The wavelet shape is related
to the HPF and LPF in that it is the
“impulse response” of an infinite
cascade of the HPFs and LPFs.
Different wavelets have different
HPFs and LPFs.  As a result of
decimating by 2, the number of
output samples equals the number of
input samples.

Wavelet Applications  Some fields that are making use of wavelets are: astronomy, acoustics, nuclear engineering,  signal
and image processing (including fingerprinting), neurophysiology, music, magnetic resonance imaging, speech
discrimination, optics, fractals, turbulence, earthquake-prediction, radar, human vision, and pure mathematics applications.
See October 1996 IEEE Spectrum article entitled “Wavelet Analysis”, by Bruce, Donoho, and Gao.


